Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics.
نویسندگان
چکیده
Notched islands on a thin elastomeric substrate serve as a platform for dual-junction GaInP/GaAs solar cells with microscale dimensions and ultrathin forms for stretchable photovoltaic modules. These designs allow for a high degree of stretchability and areal coverage, and they provide a natural form of strain-limiting behavior, helping to avoid destructive effects of extreme deformations.
منابع مشابه
Design of ARC less InGaP/GaAs DJ solar cell with high efficiency
In this work, we used the Atlas Tcad Silvaco software to investigate the effect of adding an additional BSF layer on the performance of InGap / GaAs dual junction solar cells with a hetero tunnel Al0.7Ga0.3As-In0.49Ga0.51P junction. These analyzes indicate that, the addition of a BSF layer to the bottom cell the increase in the thickness of the BSF top cell would reduce the recombination and in...
متن کاملStretchable GaAs photovoltaics with designs that enable high areal coverage.
Recent research in advanced materials and mechanics demonstrates the possibility for integrating inorganic semiconductors with soft, elastomeric substrates to yield systems with linear elastic mechanical responses to strains that signifi cantly exceed those associated with fracture limits of the constituent materials (e.g. ∼ 1% for many inorganics). This outcome can provide stretching to strain...
متن کاملHigh-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy
We report the initial results of GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy (MBE) technique. For GaAs single-junction solar cell, with the application of AlInP as the window layer and GaInP as the back surface field layer, the photovoltaic conversion efficiency of 26% at one sun concentration and air mass 1.5 global (AM1.5G) is realized. The efficiency of 16.4% i...
متن کاملDesign of Iii-v Multijunction Solar Cells on Silicon Substrate
With looming energy crisis across the globe, achieving high efficiency and low cost solar cells have long been the key objective for photovoltaic researchers. III-V compound semiconductor based multijunction solar cells have been the dominant choice for space power due to their superior performance compared to any other existing solar cell technologies. In spite of unmatched performance of III-...
متن کاملIII-V/Si hybrid photonic devices by direct fusion bonding
Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Small
دوره 8 12 شماره
صفحات -
تاریخ انتشار 2012